Maths Information Evening Tuesday igth September 2023

What do lessons involve at Preston Hedge's?

Arithmetic

Reasoning
Whiteboard work
Book work

What content is covered in lessons?

- Arithmetic
- Fractions
- Decimals and percentages
- Measure
- Shape
- Statistics

Methods of calculation

Year	Addition	Subtraction	Multiplication	Division
R	Concrete objects and pictorial representations	Concrete objects and pictorial representations	Concrete objects and pictorial representations	Concrete objects and sharing
$\mathbf{1}$	Pictorial representations and Number lines	Pictorial Representations	Pictorial Representations and Arrays	Pictorial Grouping
$\mathbf{2}$	Number Lines and (Expanded) Column Method	Number Lines	Repeated Addition	Number Line
$\mathbf{3}$	Column Addition (Carrying)	Column Subtraction (Borrowing)	Short Multiplication	Bus stop
$\mathbf{4}$	Column Addition Column Subtraction	Short Multiplication	Bus Stop	
5	Column Addition Column Subtraction	Long Multiplication	Bus Stop and Long	
6	Column Addition	Column Subtraction	Long Multiplication	Bus Stop and Long

EYFS and KSi - Addition \&

Subtraction

Concrete

If I had 6 bears and got 2 more, how many would I have in total?

$6+2=8$

- Pictorial representations

I had 8 apples and then I ate 3 , how many do I have left?
 (drawing it out)

$3+$

$$
2=5
$$

$\underline{K S I-A d d i t i o n ~ \& ~ S u b t r a c t i o n ~}$

- Expanded column method
$65+24=$

$$
37-13=
$$

65	37
+24	$-\quad 13$
9	$-\quad 4$
80	20
89	$-\quad 24$

(59)

Division

- Pictorial representations: - Arrays:

大路
Pictorial grouping

$$
9 \div 3=3
$$

K SI - Multiplication \&

Division

Number line using repeated addition f s multiplying:

Number line for division:
$30 \div 5=6$

KS2 - Addition \& Subtraction

- Formal column method

Children start off with no carrying and then move onto numbers involving carries in addition and borrowing in subtraction:

$$
705-486=
$$

- Once children are confident with borrowing and carrying we move onto adding multiple numbers, adding and subtracting numbers with varying amounts of digits, and calculations involving decimals.
- Short formal method

$$
761 \times 6=
$$

$$
\begin{array}{r}
761 \\
\times \quad 6 \\
\hline 4566 \\
\hline
\end{array}
$$

KS2 - Multiplication

- Long formal method

$$
\begin{gathered}
124 \times 35= \\
1.24 \times 3.5
\end{gathered}
$$

12

620
$\times 3720$

Chin are then challenged and move onto multiplying numbers involving decimals. They use exactly the same concept / method and are taught to ignore the decimal points, carrying out the calculation as normal, and then count the decimal point back in.

$\underline{K S_{2}-\text { Division }}$

Bus stop method

- Bus stop with remainders, then decimal remainders

$$
728 \div 6=
$$

- $857 \div 5=$

KS2-Division

KS2 - Fractions

Find fractions of an amount (practically, pictorially, written method and inverse).

Show, using diagrams, equivalent fractions.
$+/-$ fractions with the same denominators (with answers less than a whole).

Compare/order fractions with the same denominator.

To recognise and show equivalent fractions.
+/- fractions with the same denominator (going over a whole).

Convert mixed numbers to improper fractions and vice versa.

Solve problems involving fractions.

Year 6
To find fractions of number

To identify, name and write equivalent fractions
+/- fractions with different denominators (including mixed numbers).

Compare/order fractions with different denominators.

Write all fractions bigger than one as a mixed number.

Multiply fractions (proper fractions and mixed numbers by whole numbers)

To use common factors to simplify fractions.
+/- fractions with different denominators (including mixed numbers).

Compare/order fractions, including fractions
$>$ I.
Multiply fractions (simple
pairs of proper fractions
Divide fractions.

Improper Fraction to Mixed Number (and vice versa!)

Mixed Number to Improper
 Fraction

Whole number multiplied by the denominator and add the numerator. Keep the denominator the same.

$$
\begin{aligned}
& 5 \frac{2}{6}=\frac{32}{6} \\
& 5 \times 6+2=32
\end{aligned}
$$

Improper Fraction to Mixed Number

Numerator divided by denominator. Whole number and remainder over denominator.

$$
\frac{17}{5}=3 \frac{2}{5}
$$

$$
17 \div 5=3 r 2
$$

We encourage
children to turn all improper fractions into mixed numbers once taught in Year 4!

Adding Fractions

Find a Common Denominator
Numerator + Numerator
Denominator stays the same

$2+\frac{3^{x^{3}}}{4}=$

Mixed numbers

 need to be turned into improper fractions first!
$\frac{9}{12}=\frac{13}{12}$

Subtracting Fractions

Find a Common Denominator
Numerator - Numerator
Denominator stays the same

Mixed numbers need to be turned into improper fractions first!

$$
\frac{4}{5}-\frac{1}{2}=
$$

Multiplying Fractions

Whole number over I
Numerator x Numerator
Denominator x Denominator

Mixed numbers need to be turned into improper fractions first!

$$
\frac{2}{6} \times \frac{4}{1}=\frac{8}{6}
$$

Dividing Fractions

Keep it - keep first fraction the same
Flip it - flip the second fraction
Change it - change to multiplication

$$
\begin{aligned}
& 1 \frac{2}{\times 6} \div \frac{3}{4}= \\
& \frac{8}{6} \div \frac{3}{4}=
\end{aligned}
$$

Times Tables

Knowledge-

the key to success
Year I - counting up and back in 2s, 5 s , ios Year $2-2$, 5, io and 3 times tables
Year 3, 4, 5 and 6 - all up to 12 x

- Important to know related facts and the inverse
- Year 4 - have the Multiplication Tables Check

Times Tables

- Verbal - reciting
- Written multiplication grid
- Incorporate it into daily routines
- TT Rockstars - Garage Mode

Any questions?

